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NONLINEAR DEFORMATION AND STABILITY OF NONCIRCULAR CYLINDRICAL SHELLS

UNDER INTERNAL PRESSURE AND AXIAL COMPRESSION

UDC 629.7.023:539.3L. P. Zheleznov and V. V. Kabanov

Stability analysis of noncircular shells is performed with allowance for nonlinear subcritical deforma-
tion. Explicit expressions for the rigid displacements of elements of noncircular cylindrical shells are
obtained and used to construct shape functions of an effective quadrilateral finite element of natural
curvature. A finite-element algorithm for solving problems of nonlinear deformation and stability of
shells is developed. Stability problem of an elliptic cylindrical shell is considered. The effect of the
ellipticity and subcritical nonlinear deformation of the shell on the critical load is studied. Results
obtained are compared with available experimental data.

1. Rigid Displacements of Finite Elements of Noncircular Cylindrical Shells. For rigid displace-
ments of elements, the strain components vanish. Setting the linear components of the strain tensor, changes in
curvature, and torsion equal to zero [1], we obtain the equations

ε1 = ux = 0; (1.1)

ε2 = k2(vβ + w) = 0; (1.2)

ε3 = vx + k2uβ = 0; (1.3)

χ1 = wxx = 0; (1.4)

χ2 = k2[k2(v − wβ)]β = 0; (1.5)

χ3 = [k2(v − wβ)]x = 0. (1.6)

Here u, v, and w are the tangential displacements and deflection, respectively, R and k2 = R−1 are the radius and
curvature of the cross section, respectively, β is the angle between the normal to the cross-sectional contour and
the b axis, and x is the longitudinal coordinate (Fig. 1). The subscripts x and β denote differentiation with respect
to x and β, respectively.

We integrate Eqs. (1.1)–(1.6). From Eq. (1.5), we obtain
v = wβ +RC5, C5 = const. (1.7)

Equation (1.2) yields
w = −vβ . (1.8)

Combining (1.8) and (1.7), we obtain the equation
vββ + v = RC5. (1.9)

The solution of Eq. (1.9) has the form
v = C3c+ C4s+ vn, c = cosβ, s = sinβ, (1.10)

where vn is a particular solution of the inhomogeneous equation, which can be determined by the method of varied
arbitrary constants C3 and C4. Let

vn = C3c+ C4s, (1.11)
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Fig. 1

where C3 and C4 are functions of x and β. Then, vnβ = C3βc− C3s+ C4βs+ C4c.
Assuming that

C3βc+ C4βs = 0, (1.12)

we obtain
vnββ = −C3βs− C3c+ C4βc− C4s.

In this case, Eq. (1.9) takes the form

C3βs− C4βc = −RC5. (1.13)

From Eqs. (1.12) and (1.13), it follows that

C3 = C5ψ1 + C7(x), C4 = −C5ψ2 + C8(x), ψ1 =
∫
Rs dβ, ψ2 = −

∫
Rc dβ.

Equations (1.8), (1.10), and (1.11) can be combined to give v = C3c + C4s − C5(ψ1c + ψ2s) + C7c + C8s and
w = C3s− C4c− C5(ψ1s− ψ2c) + C7s− C8c. Condition (1.4) implies C7 = C2x and C8 = −C1x. Then

v = C3c+ C4s− C5(ψ1c+ ψ2s) + (C2c− C1s)x,
(1.14)

w = C3s− C4c− C5(ψ1s− ψ2c) + (C2s+ C1c)x.

From Eq. (1.3), we obtain

u = C1ψ1 + C2ψ2 + C6. (1.15)

Functions (1.14) and (1.15) satisfy Eqs. (1.1)–(1.6) and, hence, describe displacements of elements as rigid
bodies.

Let us consider the following particular cases:
— for elliptic shells, z2/b2 + y2/a2 = 1, R = a2b2/d3, d2 = a2s2 + b2c2, ψ1 = −b2c/d, and ψ2 = −a2s/d;
— for parabolic shells, z2 = 2py, R = p/c3, ψ1 = p/c2, and ψ2 = ps;
— for hyperbolic shells, z2/b2 − y2/a2 = 1, R = a2b2/d3, d2 = a2s2 − b2c2, ψ1 = b2c/d, and ψ2 = −a2s/d;
— for circular shells, z2 + y2 = R2, ψ1 = −Rc, and ψ2 = −Rs.
2. Finite Element and Algorithm of Solution. We construct shape functions of a quadrilateral finite

element of natural curvature. Previously, similar elements were proposed for circular cylindrical shells and shells
of revolution [2]. We divide a shell into m and n parts by the principal-curvature lines along the generatrix and
directrix, respectively. Thus, the shell is modeled by m× n curvilinear rectangular finite elements. Approximating
the tangential displacements and deflection by bilinear and bicubic functions, respectively, and taking into account
(1.14) and (1.15), we write the total displacements of a finite element in the form

u = a1xy + a2x+ a3y + a4 + a6ψ2 + a20ψ1,

v = a5xy + a6xc+ a7y + a8(ψ1c+ ψ2s)− a20xs+ a23c− a24s, (2.1)

w = a9x
3y3 + a10x

3y2 + a11x
3y + a12x

3 + a13x
2y3 + a14x

2y2 + a15x
2y + a16x

2 + a17xy
3

+ a18xy
2 + a19xy + a20xc+ a21y

3 + a22y
2 + a23s+ a24c+ a6xs+ a8(ψ1s− ψ2c).
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We write system (2.1) in matrix form

ũ = Pa, (2.2)

where ũ = {u, v, w}t is the displacement of the points of the middle surface of a finite element, a = {a1, . . . , a24}t is
the vector of unknown coefficients of the polynomials ai, and P is a 3 × 24 matrix composed of the multipliers of
the coefficients ai in functions (2.1). Expressing the coefficients ai in terms of nodal unknowns, we obtain

a = B−1ū, (2.3)

where ū = {ui, vi, wi, ϑ1i, ϑ2i, wxyi, uj , vj , wj , ϑ1j , ϑ2j , wxyj , uk, . . . , wxyk, un, . . . , wxyn}t is the vector of nodal dis-
placements, angles of rotations, and mixed derivatives of deflections, B is a 24× 24 matrix whose nonzero elements
have the form

b1,j = p1,j , b2,j = p2,j , b3,j = p3,j , b4,j = (p3,j)x, b5,j = (p2,j − (p3,j)y)/R,

b6,j = (p3,j)xy (x = −a1, y = −b1), b7,j = p1,j , b8,j = p2,j , b9,j = p3,j , b10,j = (p3,j)x,

b11,j = (p2,j − (p3,j)y)/R, b12,j = (p3,j)xy (x = −a1, y = b1), b13,j = p1,j , b14,j = p2,j ,

b15,j = p3,j , b16,j = (p3,j)x, b17j = (p2,j − (p3,j)y)/R, b18,j = (p3,j)xy (x = a1, y = −b1),

b19,j = p1,j , b20,j = p2,j , b21,j = p3,j , b22,j = (p3,j)x, b23,j = (p2,j − (p3,j)y)/R,

b24,j = (p3,j)xy (x = a1, y = b1), j = 1, . . . , 24, a1 = L/(2m), b1 = l/(2n)

(L and l are the characteristic dimensions along the generatrix and directrix of the shell).
Substituting (2.3) into (2.2), we obtain the following relation between displacements of an element and nodal

unknowns:

ũ = PB−1ū.

There are six unknowns at each node and, hence, a finite element has 24 degrees of freedom. To determine
the nodal unknowns, we use the Lagrange variational equation δΠ = 0, where Π is the potential energy of the shell.
We write the potential energy with allowance for nonlinear relations between strains and displacements [1]. The
equation δΠ = 0 leads to a system of nonlinear algebraic equations for nodal unknowns. The system is solved by
the Newton–Kantorovich method. For a finite element, the equations have the form [3]

Hδū = qe −G, ūn+1 = ūn + δū,

where H is the Hess matrix of the finite element, determined from the second variation of the potential strain
energy, qe is the of nodal load vector, and G is the potential-energy gradient.

For the entire shell, the system of equations is constructed by a standard technique [4]. At each step of the
iterative process, the system of linear algebraic equations is solved by decomposing the Hess matrix H = LtDL [3],
where L is a triangular matrix with unit diagonal and D is a diagonal matrix. The shell is stable if the second
variation of the total potential energy of the shell is positive definite, which is equivalent to the positive defineteness
of the Hess matrix. The latter is possible if all elements of the matrix D are positive. Therefore, we can confine our
attention to the signs of the elements of the matrix D. The appearance of negative elements implies transition of the
shell from a stable to an unstable state. Once the nodal unknowns are determined, we can calculate displacements
and forces.

3. Nonlinear Deformation and Stability of an Elliptic Shell. We consider the problem of nonlinear
deformation and stability of a simply supported cylindrical shell of elliptic cross section loaded by axial compressive
force N and internal pressure p acting on the lateral surface of the shell. The shell has the length L = 2800 mm
and thickness h = 3.3 mm. The radius of the shell R0 = 1000 mm is determined as the radius of a circle with
perimeter P equal to that of the ellipse:

R0 =
P

2π
=

2a
π

π/2∫
0

{
1 +

[( b
a

)2

− 1
]

sin2 ψ
}1/2

dψ =
2a
π
Ē
(π

2
,
b

a

)
.

Here Ē(π/2, b/a) is the complete elliptic integral of the second kind and a and b are the major and minor axes of
the shell cross section, respectively. The shell is made of a material with Young’s modulus E = 7 · 104 MPa and
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Fig. 2

Fig. 3

Fig. 4

Poisson’s ratio ν = 0.3. Konoplev and Kopp [5] obtained the following empirical formula for the critical internal
pressure:

p0 = p̄Eγ2,

where p̄ = (24.1µ−1 + 130.2µ−3 + 276.3µ−5)λ−2γ0.6, λ = L/R0, γ = h/R0, and µ = a/b.
Figure 2 shows the parameter of the critical compressive force kp = Ncr/Nb [Nb = Eh2/(Rb

√
3(1− ν2)) and

Rb = a2/b] versus the ellipticity parameter b̄ = b/a for linear and nonlinear initial stress–strain states (solid and
dashed curves, respectively) for various values of the critical internal pressure parameter kq = pcr/p0. One can see
from Fig. 2 that as b̄ decreases, the critical load parameter first decreases (more rapidly for large kq) and, then,
increases. For kq < 0.4, the parameter b̄ affects results only slightly. The discrepancy between the corresponding
curves is approximately 20%. As b̄ decreases, the critical compressive load increases abruptly for the linear solution
for kq > 0.4, and in the case of nonlinear initial stress–strain state, the critical load is stabilized for b̄ < 0.4. For
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almost all values of kq and over the entire range of b̄, the curves corresponding to the nonlinear solution lie below
the corresponding curves for the linear solution. The exception is the shells for which 0.5 < b̄ < 0.8 and kq = 0.4.
The effect of nonlinearity is more pronounced for b̄ < 0.4.

Figure 3 shows curves of kp versus kq for linear and nonlinear initial stress–strain states (solid and dashed
curves, respectively) for various b̄. One can see from Fig. 3 that as kq increases, the critical load first increases
slightly and reaches a maximum for kq = 0.2, after which it decreases. The effect of the nonlinear stress–strain state
becomes more pronounced as kq increases. The discrepancy between the corresponding curves is 5–60%. Points 1
and 2 in Fig. 3b refer to the experimental data of [6, 7] (b̄ = 0.5).

Calculation results show that the stress–strain state and buckling mode of the shell are substantially nonuni-
form along both coordinates of the shell. A rhomb-like buckling mode occurs if the axial compression dominates.
For low axial loads, oblique dents are formed. For other combinations of internal pressure and axial forces, a mixed
buckling mode is observed. Figure 4 shows the buckling mode of a shell with b̄ = 0.6, kp = 0.2, and kq = 0.9.

The results were obtained using a 30× 30 finite-element grid, which gives an error not larger than 5%. An
octant of the shell was considered owing to symmetry.
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